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1. The Quasicontinuum method

(E. Tadmor, R. Miller, V. Shenoy, D. Rodney, R. Phillips, M. Ortiz)

= Implementation in the QC code: www.gcmethod.com

= Energy minimization technique at OK with a reduced number of degrees of
freedom
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http://www.qcmethod.com/

1SImM

] mechan

1ca

t

the Ccri

1n

e
L]

. Onlyafew atoms are involved

STV SSRGS S

D

2. Coarse-grained MD
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2. Coarse-grained MD: Requirements

= The coarse-grained system should behave like
the full atomistic system:

= Recover the equilibrium properties of the system at finite
temperature as time averages over the trajectories:

A (q ; )Coarse— grained <A(ql'r )>NVT

= The equations of motions in the atomistic regions should
be as close as possible to the full system

= The coarse-grained regions ensure the appropriate
boundary conditions

January 16, 2004 Quasicontinuum at Finite Temperature



2. Coarse grained MD: Potential energy

= Assumption: At each time step, the slave/missing atoms
are at equilibrium

Pla.p)= —%ln 1] expl- AV (¢ 4" g

slaves

= Restriction to problems close to equilibrium

= We need an approximation scheme to calculate the coarse-
grained-potential energy
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i 2. Coarse grained MD: Kinetic energy

= We use the lumped mass approach:

M. =nm
= The coarse-grained potential energy can be written as:

el i)

A
representative 2M i
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2. Coarse grained energy: Thermostat

s Nosé-Poincaré Thermostat

Real system _ Virtual system

.....

SR SERERS ) S S SSERS=REs
W - - s

(N,,V.T) (N;+1,V,E)

= Hamiltonian dynamics: the algorithm satisfies the symplectic
condition

= Real time = Virtual time
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2. Coarse grained MD: Dynamical
behavior in the atomistic regions

= Equations of motion
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2. Coarse grained MD: Dynamical
behavior in the coarse-grained regions

= Equations of motion

dg; _ p; P
dt M, m,

l

dt  oq ol TR
m  Time correlation functions

: oV 2 ey 3
()2 Al k)

L A e )R

NVT

= The phonon spectrum is modified in the presence of coarse-grained
regions
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3. Implementation: Potential energy

Pa.8)= —%ln II] expl- BU(q" ¢’ g = N %ln II] expl- BU(¢L e Mg

|

Exact
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3. Implementation: Potential energy

= Deformation gradient F,

m Cauchy-Born approximation

Ma.p)= ¥ E'+ Y ElE.A)

i€atomistic elements

= Representative atoms: Energy E“’@)

= Slave atoms: Free energy (Local Harmonic model — LeSar et al. 1989)

det D\F,
Fat (ﬂ,ﬂ)z Eat(@)-i- k; ln ZL)

kT

e,ﬂ) rEatL)_l_ o e,ﬂ)

= Finally:
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4. Validatioh: T'herm'al 'expa'nsic')n
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EAM Ni (Angelo 1995) - 200x100nm

- . Gold standard: .MD

= Agreement within 0.3%

= Possible internal stress
when combining atomistic
and coarse-grained regions
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4. Validation: Elastic moduli

NPQC
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5. Nanoindentation simulations

= Brinell indentation tests: R=70 A
= Speed: 0.05A/ps

= Sample: 2000x1000A

m Equilibration time: 200 ps

= Total time: 600 ps

= Nickel - EAM Angelo (1995)

= 5000 representative atoms vs 107 atoms
s Speedup: ~ 10°
= 24 hours on a regular computer (1GHz)
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5. Nanoindentation simulations
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5. Nanoindentation simulations
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6. Current issues

s Ghost forces:

= L.ocal/Non-local interface

= Instabilities at higher temperature

s Different equilibrium lattice parameters:

= Can we do better at a reasonable computation cost?

s Wave reflection at the interface?
= Mesh adaption?
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i 6. Conclusion

Described the Nosé-Poincaré Quasicontinuum
method. It allows to perform molecular dynamics
without all the atoms at finite temperature.

The equilibrium properties are recovered

Application to nanoindentation simulations:
Dislocation nucleation depends on temperature

Next step: temperature dependence of fracture

January 16, 2004 Quasicontinuum at Finite Temperature



	Multiscale Modeling of Crystaline Materials: The Quasicontinuum Method at Finite Temperature
	Outline
	The Quasicontinuum method (E. Tadmor, R. Miller, V. Shenoy, D. Rodney, R. Phillips, M. Ortiz)
	2. Coarse-grained MD
	2. Coarse-grained MD: Requirements
	2. Coarse grained MD: Potential energy
	2. Coarse grained MD: Kinetic energy
	2. Coarse grained energy: Thermostat
	2. Coarse grained MD: Dynamical behavior in the atomistic regions
	2. Coarse grained MD: Dynamical behavior in the coarse-grained regions
	3. Implementation: Potential energy
	3. Implementation: Potential energy
	4. Validation: Thermal expansion
	4. Validation: Elastic moduli
	5. Nanoindentation simulations
	5. Nanoindentation simulations
	5. Nanoindentation simulations
	6. Current issues
	6. Conclusion

